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Vector fields

Definition

Suppose at each point of the plane R2 there is given a vector, so that the
coordinates of the vector vary continuously with the point. Then we say
we are given a vector field on R2.

Often convenient to give vector field in the form f (x , y) ∂
∂x + g(x , y) ∂

∂y .
This means that at any point (x , y) we are given the vector with
coordinates (f (x , y), g(x , y)).

Definition

Points with the zero vector assigned are called singular. We will always
assume that our vector fields have finitely many singular points.
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Index of a curve

Definition

Suppose we are given a vector field on R2, and a non-self intersecting
oriented curve C with no singular points on it.

At any point x ∈ C dilate the vector vx at x to a vector ṽx at some
fixed point on the plane.

When x goes along C , vector ṽx will rotate. Count the total number
of rotations, clock-wise ones counted with “−′′ sign and
counter-clock-wise with the “+′′ sign.

This total number of rotations is called the index of C , denoted
i(C ).
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Index of a singular point

Definition

Suppose z ∈ R2 is a singular point. Take a closed curve C around z which
does not contain any other singular points. Then i(C ) is called index of z
and is denoted by i(z).

Notice: this definition makes sense!
Exercise: compute indices of singular points of the fields below.
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Trajectories

We can think of a vector field as defining velocities of each point. So
every point is moving along a trajectory, and so the vector field is a
field of velocities of the points moving along the trajectories.

Exercise: compute indices of the following vector fields.
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Index theorem

Theorem

Suppose we have a vector field on R2 and a “nice” curve C . Index of a
curve C is equal to the sum of indices of singular points inside this curve.

Proof:
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Very important corollary

Corollary

If index of a closed curve is not 0, then there is a singular point inside.

Application:

Theorem

Let f : D → D be a continuous map from a disk to itself, such that each
point of S1 = ∂D is mapped to itself. Then there exists a point x ∈ D
mapping to the center O of D.
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Theorem

Let f : D → R2 be a continuous map from a disk to itself, such that each
point of S1 = ∂D is mapped to itself. Then there exists a point x ∈ D
mapping to the center O of D.

Proof:
Define a vector field on D ⊂ R2 by vx = )f (x).

On the S1 ⊂ D it will be just x ∂
∂x + y ∂

∂y .

Index of S1 is 1 6= 0, so there is a singular point inside.

This is what we wanted.
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Fundamental theorem of algebra

Theorem

Any polynomial P(z) = zn + an−1z
n−1 + · · ·+ a0 with complex

coefficients has a complex root.

Proof:
Consider two vector fields vz = zn and wz = P(z).

Let’s prove that on a circle {z ∈ C | |z | = R} for big enough R holds
inequality |wz − vz | < |vz |.
If a = max{|a0|, . . . , |an−1|}, then (for R > 1)
|wz − vz | = |an−1z

n−1 + · · ·+ a0| ≤ |an−1|Rn−1 + · · ·+ |an| ≤ naRn−1.

Since |vz | = Rn on this circle, then |wz − vz | < |vz | for R > na + 1.

So vectors vz and wz can’t point in opposite directions.
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Lemma

Lemma

Index of the origin 0 ∈ C with respect to the vector field vz = zn equals n.

Proof:
Any complex number can be written in the form z = |z |e iϕ.

Thus can write vz as vz = |z |ne inϕ.

When ϕ goes from 0 to 2π, nϕ goes from 0 to 2πn. Done.
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End of the proof

Vectors vz and wz can’t point in opposite directions on a large
enough circle.

So indices of the circle C = {z ∈ C | |z | = R} w.r.t. v and w are the
same.

Lemma above gives that index of C w.r.t. v is n 6= 0.

So w has a singular point inside C , i.e. the polynomial P(z) has a
root inside C .
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