Vector fields on the plane

Sasha Patotski

Cornell University

ap744@cornell.edu

December 15, 2014

Sasha Patotski (Cornell University)

Vector fields on the plane

Suppose at each point of the plane \mathbb{R}^2 there is given a vector, so that the coordinates of the vector vary continuously with the point. Then we say we are given a **vector field** on \mathbb{R}^2 .

Often convenient to give vector field in the form $f(x, y)\frac{\partial}{\partial x} + g(x, y)\frac{\partial}{\partial y}$. This means that at any point (x, y) we are given the vector with coordinates (f(x, y), g(x, y)).

Definition

Points with the zero vector assigned are called **singular**. We will always assume that our vector fields have finitely many singular points.

Suppose we are given a vector field on ℝ², and a non-self intersecting oriented curve C with no singular points on it.

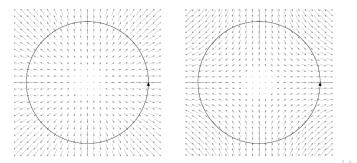
- Suppose we are given a vector field on \mathbb{R}^2 , and a non-self intersecting **oriented** curve *C* with no singular points on it.
- At any point x ∈ C dilate the vector v_x at x to a vector ṽ_x at some fixed point on the plane.

- Suppose we are given a vector field on \mathbb{R}^2 , and a non-self intersecting **oriented** curve *C* with no singular points on it.
- At any point x ∈ C dilate the vector v_x at x to a vector ṽ_x at some fixed point on the plane.
- When x goes along C, vector v
 _x will rotate. Count the total number of rotations, clock-wise ones counted with "-" sign and counter-clock-wise with the "+" sign.

- Suppose we are given a vector field on \mathbb{R}^2 , and a non-self intersecting **oriented** curve *C* with no singular points on it.
- At any point x ∈ C dilate the vector v_x at x to a vector ṽ_x at some fixed point on the plane.
- When x goes along C, vector v
 _x will rotate. Count the total number of rotations, clock-wise ones counted with "-" sign and counter-clock-wise with the "+" sign.
- This **total number** of rotations is called the **index** of C, denoted i(C).

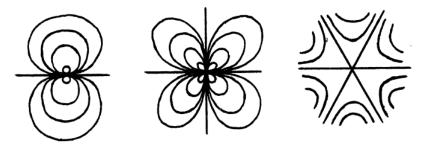
Suppose $z \in \mathbb{R}^2$ is a singular point. Take a closed curve *C* around *z* which does not contain any other singular points. Then i(C) is called **index of** *z* and is denoted by i(z).

Notice: this definition makes sense! **Exercise:** compute indices of singular points of the fields below.



We can think of a vector field as defining velocities of each point. So every point is moving along a trajectory, and so the vector field is a field of velocities of the points moving along the trajectories. We can think of a vector field as defining velocities of each point. So every point is moving along a trajectory, and so the vector field is a field of velocities of the points moving along the trajectories.

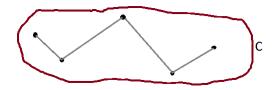
Exercise: compute indices of the following vector fields.



Suppose we have a vector field on \mathbb{R}^2 and a "nice" curve C. Index of a curve C is equal to the sum of indices of singular points inside this curve.

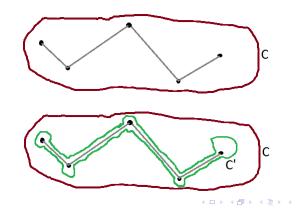
Suppose we have a vector field on \mathbb{R}^2 and a "nice" curve C. Index of a curve C is equal to the sum of indices of singular points inside this curve.

Proof:



Suppose we have a vector field on \mathbb{R}^2 and a "nice" curve C. Index of a curve C is equal to the sum of indices of singular points inside this curve.

Proof:



Corollary

If index of a closed curve is **not** 0, then there is a singular point inside.

Corollary

If index of a closed curve is **not** 0, then there is a singular point inside.

Application:

Theorem

Let $f: D \to D$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Let $f: D \to \mathbb{R}^2$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Let $f: D \to \mathbb{R}^2$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Proof:

Define a vector field on $D \subset \mathbb{R}^2$ by $v_x = \overline{f(x)}$.

Let $f: D \to \mathbb{R}^2$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Proof:

Define a vector field on $D \subset \mathbb{R}^2$ by $v_x = \overline{f(x)}$. On the $S^1 \subset D$ it will be just $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

Let $f: D \to \mathbb{R}^2$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Proof:

Define a vector field on $D \subset \mathbb{R}^2$ by $v_x = \overline{f(x)}$. On the $S^1 \subset D$ it will be just $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

Index of S^1 is $1 \neq 0$, so there is a singular point inside.

Let $f: D \to \mathbb{R}^2$ be a continuous map from a disk to itself, such that each point of $S^1 = \partial D$ is mapped to itself. Then there exists a point $x \in D$ mapping to the center O of D.

Proof:

Define a vector field on $D \subset \mathbb{R}^2$ by $v_x = \overline{f(x)}$. On the $S^1 \subset D$ it will be just $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

Index of S^1 is $1 \neq 0$, so there is a singular point inside. This is what we wanted.

Any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ with complex coefficients has a complex root.

Any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ with complex coefficients has a complex root.

Proof:

Consider two vector fields $v_z = z^n$ and $w_z = P(z)$.

Any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ with complex coefficients has a complex root.

Proof:

Consider two vector fields $v_z = z^n$ and $w_z = P(z)$.

Let's prove that on a circle $\{z \in \mathbb{C} \mid |z| = R\}$ for big enough R holds inequality $|w_z - v_z| < |v_z|$.

Any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ with complex coefficients has a complex root.

Proof:

Consider two vector fields $v_z = z^n$ and $w_z = P(z)$.

Let's prove that on a circle $\{z \in \mathbb{C} \mid |z| = R\}$ for big enough R holds inequality $|w_z - v_z| < |v_z|$.

If $a = \max\{|a_0|, \dots, |a_{n-1}|\}$, then (for R > 1) $|w_z - v_z| = |a_{n-1}z^{n-1} + \dots + a_0| \le |a_{n-1}|R^{n-1} + \dots + |a_n| \le naR^{n-1}$.

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

Any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ with complex coefficients has a complex root.

Proof:

Consider two vector fields $v_z = z^n$ and $w_z = P(z)$.

Let's prove that on a circle $\{z \in \mathbb{C} \mid |z| = R\}$ for big enough R holds inequality $|w_z - v_z| < |v_z|$.

If $a = \max\{|a_0|, \dots, |a_{n-1}|\}$, then (for R > 1) $|w_z - v_z| = |a_{n-1}z^{n-1} + \dots + a_0| \le |a_{n-1}|R^{n-1} + \dots + |a_n| \le naR^{n-1}$. Since $|v_z| = R^n$ on this circle, then $|w_z - v_z| < |v_z|$ for R > na + 1.

イロト イポト イヨト イヨト 二日

Any polynomial $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ with complex coefficients has a complex root.

Proof:

Consider two vector fields $v_z = z^n$ and $w_z = P(z)$.

Let's prove that on a circle $\{z \in \mathbb{C} \mid |z| = R\}$ for big enough R holds inequality $|w_z - v_z| < |v_z|$.

If $a = \max\{|a_0|, \ldots, |a_{n-1}|\}$, then (for R > 1) $|w_z - v_z| = |a_{n-1}z^{n-1} + \cdots + a_0| \le |a_{n-1}|R^{n-1} + \cdots + |a_n| \le naR^{n-1}$. Since $|v_z| = R^n$ on this circle, then $|w_z - v_z| < |v_z|$ for R > na + 1. So vectors v_z and w_z can't point in opposite directions.

イロト 不得 トイヨト イヨト 二日

Index of the origin $0 \in \mathbb{C}$ with respect to the vector field $v_z = z^n$ equals n.

æ

Index of the origin $0 \in \mathbb{C}$ with respect to the vector field $v_z = z^n$ equals n.

Proof:

Any complex number can be written in the form $z = |z|e^{i\varphi}$.

Index of the origin $0 \in \mathbb{C}$ with respect to the vector field $v_z = z^n$ equals n.

Proof:

Any complex number can be written in the form $z = |z|e^{i\varphi}$. Thus can write v_z as $v_z = |z|^n e^{in\varphi}$.

Index of the origin $0\in\mathbb{C}$ with respect to the vector field $v_z=z^n$ equals n.

Proof:

Any complex number can be written in the form $z = |z|e^{i\varphi}$.

Thus can write v_z as $v_z = |z|^n e^{in\varphi}$.

When φ goes from 0 to 2π , $n\varphi$ goes from 0 to $2\pi n$. Done.

Vectors v_z and w_z can't point in opposite directions on a large enough circle.

Vectors v_z and w_z can't point in opposite directions on a large enough circle. So indices of the circle $C = \{z \in \mathbb{C} \mid |z| = R\}$ w.r.t. v and w are the

same.

Vectors v_z and w_z can't point in opposite directions on a large enough circle.

So indices of the circle $C = \{z \in \mathbb{C} \mid |z| = R\}$ w.r.t. v and w are the same.

Lemma above gives that index of C w.r.t. v is $n \neq 0$.

Vectors v_z and w_z can't point in opposite directions on a large enough circle.

So indices of the circle $C = \{z \in \mathbb{C} \mid |z| = R\}$ w.r.t. v and w are the same.

Lemma above gives that index of C w.r.t. v is $n \neq 0$.

So w has a singular point inside C, i.e. the polynomial P(z) has a root inside C.